Существует много методов измерения давления и вакуума. Приборы, используемые для измерения давления, называются манометрами или вакуумметрами.
Продолжение ниже ⇓
Манометры относятся к приборам для измерения давления. Они используются для измерения величин давления, близких к атмосферному. Термином «манометр» часто называют жидкостные гидростатические приборы.
Содержание статьи:
- Точка отсчета: абсолютное и относительное давление, перепад давлений
- Единицы измерения давления
- Статическое и динамическое давление
- Электронные датчики давления
- Калибровка
- Динамические переменные
- Европейский стандарт (Европейская комиссия по стандартизации)
Вакуумметры используются для измерения давления в вакууме, который, в свою очередь, бывает двух видов – высокого и низкого разрежения (иногда выделяют еще вакуум сверхвысокого разрежения). Диапазоны давлений, для которых используются разные методики измерения, частично совпадают. Таким образом, использование различных типов измерительных приборов позволяет измерять давление от 10 до 10−11мбар.
Точка отсчета: абсолютное и относительное давление, перепад давлений
Измерения давления в повседневной жизни, например - измерение давления воздуха в шинах, обычно проводятся относительно давления окружающего воздуха. В других случаях давление измеряется относительно вакуума или некоторой другой точки отсчета. При рассмотрении точек отсчета давления используются такие понятия:
- Абсолютное давление измеряется относительно идеального вакуума и равно сумме относительного давления (давления по прибору) и атмосферного давления.
- Относительное давление (давление по прибору) измеряется относительно давления окружающего воздуха и равно разности абсолютного давления и атмосферного давления. Знак минус при этом обычно опускается.
- Перепад давлений – разность давлений в двух точках.
Точка отсчета давлений обычно понятна из контекста и оговаривается только когда необходимо пояснение. Давление воздуха в шинах и кровяное давление обычно по определению относительны, а значения атмосферного давления, давления глубокого вакуума и давления по альтиметру абсолютны. Разность давлений часто используется в промышленных установках. Измерители перепада давления имеют два впускных отверстия, каждое соединяется с сосудом, давление в котором должно быть контролируемым. Фактически такой измеритель осуществляет математическую операцию вычитания, устраняя необходимость работы оператора или системы контроля для наблюдения за двумя отдельными измерителями и определения разности в показаниях. Небольшие величины вакуумметрического давления часто допускают двоякое толкование, поскольку могут представлять абсолютное или относительное давление без знака минус. Таким образом, относительное вакуумметрическое давление в 26 дюймов ртутного столба эквивалентно абсолютному вакуумметрическому давлению, равному 30 (среднее атмосферное давление) дюймов рт.ст. – 26 дюймов рт.ст. = 4 рт.ст.
Атмосферное давление обычно принимается равным 100 кПа на высоте уровня моря, но может меняться в зависимости от высоты и погоды. Если абсолютная величина давления жидкости остается постоянной, то относительное давление той же жидкости будет изменяться в зависимости от изменения атмосферного давления. Например, когда автомобиль едет вверх по склону горы (атмосферное давление падает), относительное давление в шинах поднимается. Были определены некоторые стандартные величины атмосферного давления, например, 101.325 кПа или 100 кПа. В некоторых инструментах одно из этих значений может использоваться в качестве точки отсчета вместо фактического значения давления окружающего воздуха. Это уменьшает точность этих приборов, особенно при использовании на больших высотах.
Если атмосферное давление используется как точка отсчета, после единиц измерения обычно ставится буква g, например - 30 psi (pound per square inch – фунтов на квадратный дюйм) g. Это означает, что измеряемое давление равно разности абсолютного и атмосферного давления. Есть два вида установки нулевого (эталонного) значения для измерителя: для вентилируемого прибора и для герметично закрытого измерителя.
Для вентилируемого измерителя датчик давления допускает воздействие внешнего давления воздуха на отрицательную сторону мембраны, воспринимающей давление, через вентилируемый кабель или отверстие в приборе так, чтобы прибор всегда измерял давление, соотносясь с атмосферным давлением. Таким образом, датчик давления вентилируемого прибора всегда должен измерять нулевое давление так, чтобы был открыт доступ воздуха.
Для герметично закрытого измерителя процедура очень похожа, кроме того, что отрицательная сторона мембраны герметично закрыта. Обычно это применяется для приборов, измеряющих высокое давление, например, в гидравлике, где влияние изменения атмосферного давления на точность прибора пренебрежимо мало, поэтому вентиляция не является необходимой. Это также позволяет некоторым производителям предусматривать дополнительную защитную оболочку в качестве еще одной меры предосторожности на случай, если давление разрыва основной воспринимающей мембраны будет превышено.
Есть другой способ установки нулевого значения герметично закрытого измерителя - на обратной стороне воспринимающей мембраны. В этом случае сигнал на выходе смещается так, что показания датчика давления при измерении атмосферного давления близки к нулю.
Показания датчика при установке нулевого значения для герметично закрытого измерителя никогда не будут точно равняться нулю, поскольку атмосферное давление постоянно изменяется и качество нулевого значения в этом случае устанавливается давление в 1 бар.
Измерение абсолютного давления связано с понятием абсолютного вакуума. Лучшим примером абсолютного эталонного давления является атмосферное или барометрическое давление.
При изготовлении датчиков абсолютного давления производитель создает вакуум высокого разряжения за воспринимающей мембраной. Если к соединению датчика абсолютного давления имеется доступ воздуха, датчик покажет текущее значение барометрического давления.
Единицы измерения давления
|
Паскаль
(Pa, Па)
|
Бар
(bar, бар)
|
Техническая атмосфера
(at, ат)
|
Физическая атмосфера
(atm, атм)
|
Миллиметр ртутного столба
(мм рт.ст.,mmHg, Torr, торр)
|
Фунт-сила
на кв. дюйм
(psi)
|
1 Па
|
1 Н/м2
|
10−5
|
10,197·10−6
|
9,8692·10−6
|
7,5006·10−3
|
145,04·10−6
|
1 бар
|
105
|
1·106 дин/см2
|
1,0197
|
0,98692
|
750,06
|
14,504
|
1 ат
|
98066,5
|
0,980665
|
1 кгс/см2
|
0,96784
|
735,56
|
14,223
|
1 атм
|
101325
|
1,01325
|
1,033
|
1 атм
|
760
|
14,696
|
1 мм рт.ст.
|
133,322
|
1,3332·10−3
|
1,3595·10−3
|
1,3158·10−3
|
1 мм рт.ст.
|
19,337·10−3
|
1 psi
|
6894,76
|
68,948·10−3
|
70,307·10−3
|
68,046·10−3
|
51,715
|
1 фунт/дюйм2
|
В системе СИ единицей измерения давления является паскаль, равный одному ньютону на квадратный метр (Н·м-2 или кг·м−1·с−2). Официальное название этой единицы было принято в 1971 году, а до этого давление, согласно СИ, измерялось в Н·м-2. При указании значений давления, в скобках, после единиц измерения, указывается - относительным или абсолютным является значение. Например - 101 кПа (абс.). Такая единица измерения давления, как фунт на квадратный дюйм (psi), до сих пор широко используется в США и Канаде, например, при измерении давления воздуха в шинах. Часто к обозначению этих единиц добавляется буква, которая указывает на точку отсчета измерения: psia для абсолютных значений, psig для относительных, psid для перепада давления, хотя это не приветствуется со стороны Национального института стандартов и технологий.
Поскольку традиционно давление измерялось по своей способности изменять высоту столба жидкости в манометре, давление часто измеряется в единицах высоты столба определенной жидкости (например, дюймах водяного столба). Чаще всего используется ртуть (Hg) и вода; вода нетоксична и общедоступна, а плотность ртути позволяет измерять давление при помощи столба меньшего объема (т.е. манометр будет более компактным).
Плотность жидкостей и сила тяжести могут изменяться в зависимости от местных факторов, поэтому высота столба жидкости не всегда позволяет измерить давление достаточно точно. Если в настоящее время значение давления указывается где-либо в «миллиметрах ртутного столба» или «дюймах ртутного столба», эти значения не подразумевают существование реального ртутного столба и могут быть представлены в единицах системы СИ. Единицы, основанные на высоте водяного столба, связаны с одним из первоначальных определений килограмма как массы одного литра воды.
Несмотря на неодобрение современных специалистов по измерениям, эти единицы измерения давления до сих пор используются во многих областях. Кровяное давление измеряется в миллиметрах ртутного столба в большинстве стран мира, а давление в легких – в сантиметрах водяного столба. Давление в газопроводах измеряется в дюймах водяного столба, эти единицы указываются как 'inch WC' ('Water Column'). Аквалангисты пользуются простым эмпирическим правилом: давление на глубине 10 метров, приблизительно, равно одной атмосфере. В вакуумных системах давление в основном измеряется в миллиметрах, микрометрах и дюймах ртутного столба. В миллиметрах и микрометрах обычно измеряется абсолютное давление, а в дюймах – относительное.
Атмосферное давление обычно указывают в килопаскалях (кПа) или атмосферах, однако, метеорологи в США предпочитают гектопаскали (гПа) и миллибары (мбар). В США и Канаде при инженерных расчетах напряжение часто измеряется в килофунтах (kip – сокращенно от kilopound). Однако напряжение не эквивалентно давлению, поскольку не является скалярной величиной. В системе СГС (сантиметр-грамм-секунда) единица измерения давления называлась «барье» (ba) и равнялась 1дин·см−2. В системе МТС (метр-тонна-секунда) единицей давления была пьеза, эквивалентная 1 стену на квадратный метр.
Также используется много гибридных единиц, таких как мм рт.ст./см² или грамм-силы/см² (иногда как кг/ см² или г/моль2 без указания единиц силы). Использование названий «килограмм-сила», «грамм-сила» недопустимо в системе СИ, поскольку единицей силы в СИ является ньютон (Н).
Статическое и динамическое давление
Статическое давление равномерно во всех направлениях, поэтому выбор направления не имеет значения при измерениях давления неподвижной (статической жидкости). Течение, однако, создает дополнительное давление на поверхности, перпендикулярные направлению течения, и почти не влияет на поверхности, параллельные направлению течения. Этот компонент давления в подвижной (динамической) жидкости, зависящий от направления, называется динамическим давлением. Прибор, определяющий направление течения, измеряет сумму статического и динамического давлений. Эта величина называется полным или суммарным давлением. Поскольку динамическое давление сравнивается со статическим, оно является не абсолютным или относительным, а, по сути, перепадом давлений.
Относительное статическое давление имеет первостепенную важность при определении нагрузки на стенки труб. Динамическое давление используется при расчете расхода газов и жидкостей, а также скорости воздушных потоков. Динамическое давление может быть измерено как разность показаний приборов, размещенных в потоке параллельно и перпендикулярно ему. Например, трубки Пито используются для подобных измерений при испытаниях самолетов. Присутствие измерительных приборов неизбежно повлияет на направление потока и может создать турбулентность, поэтому их форма критически важна для точности измерений. Их калибровочные характеристики часто нелинейны.
Устройства, измеряющие статическое и динамическое давление
- Альтиметр (высотомер)
- Барометр
- Датчик давления в коллекторе
- Трубка Пито
- Сфигмоманометр
Приборы для измерения давления
Многочисленные приборы для измерения давления имеют различные преимущества и недостатки. Диапазон давлений, чувствительность, динамические реакции и стоимость различных инструментов для измерения давления часто отличаются на несколько порядков. Самый первый из таких приборов – жидкостный манометр – был изобретен Евангелиста Торричелли в 1643 году. U-образная трубка была создана Христианом Гюйгенсом в 1661 году.
Гидростатические
В основе гидростатических приборов (например, жидкостных манометров) лежит сравнение давления с гидростатической силой, действующей на единицу площади основания столба жидкости. Измерение давления с помощью гидростатических приборов не зависит от вида используемой жидкости; такие приборы имеют линейную шкалу измерений. Они обладают слабой динамической реакцией.
Грузопоршневые
Грузопоршневые приборы для измерения давления уравновешивают давление жидкости или газа струей (например, манометры для измерения давления в шинах сравнительно низкой точности) или твердым грузом; такие приборы называются грузовыми испытателями и используются для проверки правильности калибровки других манометров.
Жидкостные
Жидкостный манометр представляет собой вертикальный столб жидкости в U-образной трубке. Жидкость в обоих коленьях трубки находится под давлением разной силы. Столб поднимается или опускается в зависимости от перепада давления в двух концах трубки. Самый простой вариант такого манометра - U-образная трубна с жидкостью, один конец которой присоединен к сосуду, давление в котором нужно измерить, а жидкость во втором находится под заранее определенным давлением (возможно, атмосферным или вакуумным). По разнице в уровнях жидкости можно определить действующее давление. Давление от столба жидкости высотой h и плотностью ρ рассчитывается по гидростатической формуле P = hgρ. Из этого следует, что разность между действующим давлением Pa и заранее определенным давлением P0 в U-образном жидкостном манометре может быть определено путем решения уравнения Pa − P0 = hgρ.
Другими словами, давление на столб жидкости в каждом из концов трубки должно быть уравновешено (поскольку жидкость статична), отсюда Pa = P0 + hgρ. Если жидкость, давление которой измеряется, имеет значительную плотность, могут быть необходимы гидростатические поправки при измерении высоты столба рабочей жидкости манометра и точки, где нужно измерить давление, кроме случаев измерения перепада давлений (например, с помощью измерительной диафрагмы или трубки Вентури). В этом случае плотность ρ должна быть скорректирована путем вычитания плотности жидкости, давление которой измеряется.
Для использования в жидкостном манометре может быть выбрана любая жидкость, но, в большинстве случаев, это ртуть, имеющая высокую плотность (13.534 г/см3) и низкое давление насыщенных паров. Также часто используется вода («дюймы водяного столба» являются распространенной единицей измерения давления). Измерение давления с помощью жидкостных манометров не зависит от вида используемой жидкости; такие приборы имеют линейную шкалу измерений. Они обладают слабой динамической реакцией. При измерении вакуума рабочая жидкость может испариться и заполнить вакуум, если давление ее насыщенных паров слишком велико. При измерении давления различных жидкостей отрезок трубки, заполненный газом или легкой жидкостью, может изолировать жидкости друг от друга, чтобы не допустить их смешивания, но это может быть необязательно, например, если в качестве рабочей жидкости при измерении давления воды используется ртуть. Простые жидкостные манометры могут измерять давление в диапазоне от нескольких миллиметров ртутного столба (около 100 Па) до нескольких атмосфер (1 000 000 Па).
Одношкальный жидкостный манометр имеет большой резервуар вместо одного из колен трубки и шкалу делений на узкой части (собственно трубке). Трубка может быть наклонена для усиления движения жидкости. В зависимости от области использования и конструкции существуют такие виды манометров:
- Простой манометр
- Микроманометр
- Дифференциальный манометр (дифманометр)
- Перевернутый дифференциальный манометр.
Вакуумметр Мак-Леода
Вакуумметр Мак-Леода изолирует образец газа и сжимает его при помощи несколько измененного ртутного манометра, пока давление газа не достигнет нескольких миллиметров ртутного столба. Состояние газа должно быть стабильным во время сжатия (например, он не должен конденсироваться). Методика занимает много времени и неудобна для постоянных наблюдений, но при этом обладает высокой точностью.
Диапазон измеряемых давлений: от более 10-4мм рт.ст. (около10-2 Па) до 10−6 мм рт.ст. (0.1 мПа), причем 0.1 мПа – самое низкое значение давления, которое может быть прямо измерено на данном этапе развития технологий. Другие вакуумметры могут измерять и меньшие значения, но только косвенно при помощи других методов измерения давления. Эти непрямые измерения переводятся в единицы СИ путем прямых измерений, в основном с помощью вакуумметра Мак-Леода.
Анероид
Анероидные измерительные приборы состоят из металлического элемента, восприимчивого к давлению, который изгибается под действием перепада давления. «Анероид» означает «без жидкости», и этот термин используется для того, чтобы отделить этот класс приборов от вышеописанных гидростатических манометров. Однако анероиды могут использоваться для измерения давления и жидкостей и газов, и это не единственный тип измерительных приборов, в которых не используется жидкость. Поэтому сейчас их часто называют механическими измерителями давления. Вид газа, давление которого измеряется, не влияет на измерения давления при помощи анероидов (в отличие от термопроводных и ионизационных приборов). Также анероиды не могут загрязнить исследуемое вещество, как это может произойти с гидростатическими приборами. В качестве элемента, воспринимающего давление, может использоваться трубка Бурдона, диафрагма или сильфон; эти элементы меняют форму под действием давления в исследуемой точке. Отклонение или прогиб этого элемента может считываться при помощи иглы или другого преобразователя. Самые распространенные преобразователи регистрируют изменения электроемкости вследствие механического изгиба. Емкостные приборы называются баратронами.
Манометр с трубкой Бурдона
Манометр с трубкой Бурдона использует следующий принцип: согнутая трубка стремится выпрямиться и увеличить диаметр под действием внутреннего давления. Однако изменение диаметра может быть почти незаметно, поэтому при умеренных напряжениях в пределах упругого деформирования легко обрабатываемых материалов напряжение в металле, из которого сделана трубка, усиливается путем придания трубке формы буквы С или даже плоской спирали так, чтобы вся трубка стремилась выпрямиться или раскрутиться под влиянием давления.
Евгений Бурдон запатентовал этот прибор во Франции в 1849 году. Манометр Бурдона широко применяется благодаря очень высокой чувствительности, простоте и точности. В 1852 году Эдвард Эшкрофт приобрел патент на изготовление прибора в Америке и стал основным производителем манометров Бурдона. Также, в 1849 году, в немецком городе Магдебурге Бернард Шеффер успешно запатентовал мембранный манометр, который, наряду с манометром Бурдона, осуществил революцию в промышленных измерениях давления. Но в 1875 году, после того как истек срок патента Бурдона, компания «Шеффер и Буденберг» также стала производить манометры с трубкой Бурдона.
Измерение давления с помощью трубки Бурдона выглядит так: сплющенная, тонкостенная, запаянная с одной стороны трубка, подсоединяется открытым концом к зафиксированному сосуду, в котором находится жидкость, давление которой должно быть измерено. При повышении давления запаянный конец трубки описывает дугу, система рычагов и передач преобразует это движение и приводит в действие ведущую шестерню небольшого диаметра, к которой подсоединена стрелка указателя. Расположение циферблата позади стрелки, возможность установить начальное положение стрелки, длину и начальное положение соединительных деталей – все это позволяет откалибровать прибор и измерить нужный диапазон давления. Перепад давлений можно измерить, используя прибор с двумя разными трубками Бурдона, сцепленными между собой.
Манометры с трубками Бурдона измеряют давление относительно атмосферного; измерение вакуумного давления выглядит как движение в обратную сторону. В некоторых анероидных барометрах используются трубки Бурдона, запаянные с двух концов (но большинство имеет диафрагмы или сильфоны). Соединительная трубка имеет ограничительное отверстие на случай, если измеряемое давление быстро меняется (например, при работе насоса), во избежание износа деталей. В случае, если прибор подвергается вибрации, корпус может быть заполнен маслом или глицерином, включая стрелку и шкалу.
Не рекомендуется стучать по циферблату измерителя, поскольку это может привести к ухудшению точности его текущих показаний. Трубка Бурдона находится отдельно от циферблата и на действительное значение давления это не повлияет. Современные высококачественные манометры обеспечивают точность ± 2%, а специальные приборы высокой точности - ± 0.1% диапазона шкалы.
На следующих иллюстрациях показан комбинированный измеритель давления и вакуума, вынутый из корпуса и со снятой прозрачной крышкой циферблата. Такие комбинированные приборы используются для диагностики автомобилей.
- В левой части циферблата, используемой для измерения вакуума в коллекторе двигателя, указаны единицы измерения – сантиметры ртутного столба на внутренней шкале и дюймы ртутного столба на внешней.
- В правой части циферблата, показывающей давление топливного насоса, указаны килограмм-силы на квадратный сантиметр на внутренней шкале и фунты на квадратный дюйм на внешней.
Детали устройства
Неподвижные детали:
- A: Принимающий блок. Соединяет трубку, идущую от сосуда с жидкостью с зафиксированным концом трубки Бурдона (1) и защищает основание циферблата (B). В два отверстия вкручиваются болты, на которых держится корпус.
- B: Основа циферблата. К ней крепится циферблат. В ней проделаны отверстия для осей.
- C: Дополнительная основа циферблата. К ней прикреплены наружные концы осей.
- D: Штыри, соединяющие основы циферблата.
Подвижные детали:
- Закрепленный конец трубки Бурдона. Взаимодействует с трубкой, идущей от сосуда с жидкостью, через принимающий блок.
- Запаянный подвижный конец трубки Бурдона.
- Шарнир и ось шарнира.
- Элемент, соединяющий ось шарнира с рычагом, с осями, допускающими их совместный поворот.
- Рычаг. Часть зубчатого сектора.
- Ось зубчатого сектора.
- Зубчатый сектор.
- Ось стрелки прибора. Имеет зубчатое колесо, вращающее зубчатый сектор и, проходя сквозь циферблат, вращает стрелку прибора. Благодаря маленькому расстоянию между втулкой плеча рычага и осью шарнира, а также разницей между эффективными диаметрами зубчатого сектора и зубчатого колеса стрелки прибора, эффект от любого движения трубки Бурдона многократно увеличивается. Мелкие движения трубки преобразуются в видимые перемещения стрелки прибора.
- Волосковая пружина, создающая предварительную нагрузку на зубчатую передачу, чтобы избежать запаздывания и зазора зубьев.
Диафрагменные манометры
В анероидных измерительных приборах второго типа используются гибкие диафрагмы, разделяющие области с разным давлением. Под действием давления диафрагма прогибается. Величина прогиба постоянна для известных значений давления, поэтому давление можно измерить путем калибровки диафрагмы. Деформация тонкой диафрагмы зависит от разницы между значениями давления на ее поверхностях. Одна из поверхностей может быть открыта для атмосферного воздуха, тогда вторая будет показывать относительное давление. Измерить перепад давлений можно, если будет известно давление с одной стороны диафрагмы. Если с одной стороны диафрагмы создать вакуум, тогда на второй можно будет измерить абсолютное давление. Величина прогиба диафрагмы может быть измерена при помощи механических, оптических или ёмкостных методов. Диафрагмы изготавливаются из металла и керамики.
Диапазон измеряемых давлений: более 10-2 мм рт.ст. (около 1 Па)
Для измерений абсолютных значений давления используются запаянные капсулы с диафрагмой на одной из поверхностей.
Формы диафрагм:
- плоские
- гофрированные
- уплощенные трубки
- капсулы
Сильфонные манометры
В манометрах, предназначенных для измерения малых значений абсолютного давления или перепадов давления, зубчатая передача и стрелка прибора приводятся в движение от изменения объема мембранной камеры (сильфона). Эти манометры также относятся к анероидным («без жидкости», в отличие от ранее изобретенных жидкостных приборов для измерения давления, в которых используется столбик жидкости – воды или ртути в вакууме). Сильфоны являются частью конструкции барометров-анероидов (барометров с круглой шкалой и стрелкой), альтиметров, барографов и измерителей высоты, используемых на метеорадиозондах. Такие приборы используют давление запаянной камеры в качестве точки отсчета измерения внешнего давления. Чувствительные приборы, используемые в авиации, такие как указатели скорости и вариометры, имеют соединение внешней оболочки с внутренним объемом сильфона.
Электронные датчики давления
Резистивные тензодатчики
Тензометры, жестко скрепленные с исследуемым объектом, используются для определения механических напряжений под действием давления.
Емкостные
Диафрагма и напорная камера образуют конденсатор переменной емкости, с помощью которого можно определить механические напряжения под действием давления.
Магнитные
Определяют перемещение диафрагмы по изменению ее индуктивности, с помощью LVDT-датчика, по эффекту Холла или вихревым индукционным токам.
Пьезоэлектрические
Используют пьезоэлектрический эффект некоторых материалов, таких, как кварц, для измерения напряжения в чувствительном механизме под действием давления.
Оптические
Используют физические изменения оптических волокон для измерения напряжений под действием давления.
Потенциометрические
Определяют механические напряжения под действием давления с помощью контакта, движущегося вдоль резистивного механизма.
Резонансные
Определяют напряжения или изменения плотности газов под действием давления, регистрируя изменения резонансной частоты чувствительного механизма.
Калибровка
Приборы для измерения давления могут измерять давление прямо либо косвенно. Гидростатические манометры и приборы с упругим элементом находятся под влиянием сил, возникающих на поверхности от движения частиц, и относятся к приборам прямого измерения. Термопроводные и ионизационные манометры являются приборами непрямого измерения, поскольку измеряют характеристики газа, которые предсказуемо изменяются при изменении плотности газа. Непрямые измерения давления допускают большую погрешность, чем прямые.
- Грузовые испытатели
- Вакуумметр Мак-Леода
- Массовые характеристики+ионизация
Динамические переменные
Когда поток жидкости неуравновешен, давления в разных точках могут быть выше или ниже среднего значения. Эти возмущения распространяются от источника в виде продольных колебаний давления в направлении пути распространения. Это явление также называют звуковым давлением. Звуковое давление – это кратковременное отклонение давления от среднего значения, вызванное звуковой волной. Звуковое давление может быть измерено с помощью микрофона в воздухе или гидрофона в воде. Так называемое эффективное звуковое давление равно среднеквадратичному действующему значению мгновенного звукового давления за определенный интервал времени. Значения звукового давления обычно малы и записываются в микробарах.
- Частотные характеристики датчиков давления
- Резонанс
Европейский стандарт (Европейская комиссия по стандартизации)
- EN 472 : Манометр - Словарь.
- EN 837-1 : Манометры. Манометры с трубкой Бурдона. Размеры, метрология, требования и испытания.
- EN 837-2 : Манометры. Рекомендации по выбору и установке манометров.
- EN 837-3 : Манометры. Диафрагменные и капсульные манометры. Размеры, метрология, требования и испытания.
© Авторы и рецензенты:
редакционный коллектив оздоровительного портала "На здоровье!". Все права защищены.