Пользовательский поиск

Защитная функция крови

Кровь — надежный защитник человека от множества болезней. Самыми разнообразными способами, подчас столь неясными, что нам приходится лишь догадываться о них, кровь защищает нас от кишащих повсюду патогенных организмов.

Продолжение ниже

Ферменты как лекарственные препараты

Ферменты играют ключевую роль в современной фармации. Зна­чительная ... ... иммуногенность. Мно­гократное введение чужеродного белка в систему крови человека может вызвать синтез соответствующих антител и развитие ...

Читать дальше...

всё на эту тему


Некоторые элементы крови, особенно белые тельца — фагоциты, атакуют полчища вторгающихся микроорганизмов, пытаясь вначале локализовать их действие, а затем и уничтожить их. Но это лишь один фланг обороны, осуществляемой кровью. В жидкой части крови имеется множество биохимических веществ, участвующих в уничтожении возбудителей инфекций, создании иммунитета и в других тончайших процессах, благодаря которым организм человека сопротивляется болезням.

Роль белых кровяных телец в борьбе против вторгшихся инородных организмов впервые была раскрыта в 1884 году великим русским патологом Мечниковым. Мечников назвал прожорливых защитников тела фагоцитами, по комбинации греческих слов, обозначающих: «я пожираю клетки».

Илья Ильич Мечников жил и работал в России в XIX веке, в то время, когда царь, пытаясь задушить вольнодумие, которое могло бы привести к революции, ввел строжайшие ограничения на любые действия, противоречащие «интересам безопасности». Даже исследовательские учреждения находились под неусыпным наблюдением Тайной полиций, стремившейся в самом зародыше задушить семена свободолюбивых идей.

Став жертвой бесконечных придирок и преследований, Мечников был доведен буквально до отчаяния. Не находя в себе сил противостоять давлению, но и не желая поступаться собственными убеждениями, он дважды пытался покончить жизнь самоубийством, и оба раза безуспешно. Наконец он бежал из России, переехал в Италию, а затем обосновался в Пастеровском институте в Париже.

Фагоцитирующее действие белых кровяных телец Мечников открыл, наблюдая за морской звездой, в тело которой он вонзил небольшой шип розы. В первый день он не заметил ничего заслуживающего внимания. Но на второй день, разглядывая ранку в микроскоп, обнаружил, что острие шипа было буквально окружено целым роем белых телец. Совершенно справедливо предположив, что лейкоциты пытались разрушить вредоносные организмы, занесенные в результате прокола, Мечников сформулировал теорию фагоцитоза следующим образом:

«Армия маленьких клеток, называемых фагоцитами, — писал он, — блуждающая по крови и тканям тела, способна атаковать болезнетворные микробы, и после битвы с ними во многих случаях ей удается одержать верх... над захватчиками...»

В наши дни, почти 70 лет спустя после первых наблюдений Мечникова, современная наука, естественно, гораздо лучше знакома с деятельностью фагоцитов. Но и в наших познаниях до сих пор имеются серьезные пробелы. Ученым предстоит уточнить, как происходит мобилизация фагоцитов крови, главным образом нейтрофилов, в результате которой миллионы этих клеток устремляются к пораженному участку, словно отвечая на призыв о помощи.

В тех случаях, иногда им не приходится бороться со специфическими агрессорами, фагоциты блуждают с места на место, подобно амебовидным самостоятельным организмам. Практически им доступны все органы, ибо они с легкостью проникают сквозь стенки капилляров в ткани. И повсюду, где бы они ни находились, едва лишь они сталкиваются c чужеродным организмом или веществом, они немедленно его атакуют и стремятся уничтожить его.

С помощью микроскопа удалось показать, как полчища фагоцитирующих нейтрофилов блокируют участок вторжения инфекции, подобно солдатам, отсекающим вражеский авангард. Эти фагоциты чрезвычайно прожорливы. Внутри одного лейкоцита можно различить 15-20 микробов, проглоченных заживо и в течение некоторого времени продолжающих жить внутри фагоцита.

Примерно таким же образом белые тельца атакуют и уничтожают мертвые и изношенные ткани, сгустки крови, отслужившей свой век, и другие остатки, накапливающиеся в теле.

Оборона, которую ведут лимфоциты, отличается еще большим разнообразием, чем та, которую осуществляют зернистые лейкоциты — нейтрофилы. Лимфоциты свободно передвигаются по крови, но их деятельность сосредоточена в основном в лимфатических узлах, которые являются как бы фильтрующими станциями лимфатической жидкости.

В этих узлах лимфоциты действуют подобно фагоцитам, очищая лимфу от микробов, токсинов и других опасных веществ. Но у них есть и другая функция. Каким-то до сих пор непонятным нам образом лимфоциты участвуют в образовании глобулина сыворотки — белковой фракции плазмы, играющей огромную роль в механизме иммунитета организма к инфекциям.

Клетки ретикуло-эндотелиальной системы также следует отнести к фагоцитам. Эндотелиальные клетки, тождественные тем, которыми выстлана внутренняя поверхность кровеносных сосудов, встречаются в таких органах и образованиях тела, как соединительная ткань, селезенка, печень и костный мозг. Подобно фагоцитам крови и лимфы, они действуют и как солдаты, и как «уборщики мусора», уничтожая зловредные организмы и удаляя обломки тканей.

Таковы главные фагоцитирующие защитники организма. Помимо них существуют механизмы естественной сопротивляемости и различные виды иммунитета.

С самого момента рождения организм человека почти постоянно находится в контакте с болезнетворными микробами. Мы можем, не подозревая об этом, быть носителями возбудителей различных болезней, от обычного гриппа и до полиомиелита, и все же, несмотря на постоянную подверженность инфекции, мы чаще всего не заболеваем. Причина этому — сопротивляемость организма. С помощью разнообразных механизмов, многие из которых связаны с компонентами крови, организму человека удается сдерживать активность инфекционных возбудителей в течение большей части своей жизни, не давая им размножаться и вызывать проявления болезни.

Сопротивляемость болезням у разных людей бывает различной. Даже у одного и того же человека она может время от времени изменяться. На сопротивляемость влияет множество факторов, и не все из них еще изучены. К ним относятся шок, физическое напряжение, усталость, неправильное питание, радиоактивное облучение, потеря крови, эмоциональная нагрузка и другие факторы, подтачивающие силы организма.

К сожалению, истинная сущность механизмов сопротивляемости до сих пор нам не ясна, но известно, что это свойство предотвращения болезней зависит от множества защитных факторов, большинство которых так или иначе связано с кровью. В основном эти факторы сопротивляемости либо принадлежат к глобулиновым фракциям плазмы, либо переносятся ими.

Одним из наиболее эффективных средств борьбы организма с инфекциями являются антитела. Они были обнаружены сравнительно давно, но лишь в самое последнее время ученые смогли отчетливо выяснить их природу.

Любой болезнетворный агент, проникающий в организм человека и вызывающий его защитную реакцию, может быть обозначен как антиген. К ним относятся бактерии, вирусы и другие микроорганизмы, бактериальные яды и прочие токсины, красные тельца крови несовместимой группы и любые чужеродные ткани, введенные в тело путем трансплантации или подсадки. Ткани реципиента или «хозяина» реагируют на присутствие антигена выработкой специфических веществ, обладающих свойством разрушать или обезвреживать именно этот определенный антиген. Это явление, названное реакцией антиген — антитело, наблюдается при самых разнообразных иммунологических конфликтах.

Ученые уже давно изучают механизм действия антител. Несколько лет назад, в июне 1960 года, на Национальном симпозиуме по медицине и химии, организованном Американским химическим обществом, американские исследователи Аллан Грособерг и Дэвид Прессмен выдвинули новую теорию. Исследования Гроссберга позволили установить, что антитело состоит из определенных аминокислот, соединенных между собой таким образом, что антитело по своим очертаниям совпадает с соответствующим ему антигеном, как ключ с замком; в результате антитело обезоруживает антиген и делает его неактивным. Помимо этой необычной «пригонки» антитела к антигену, между ними, очевидно, существуют какие-то взаимодействующие силы, по всей вероятности, электрического происхождения. Как полагает Прессмен, они притягивают антитело к соответствующему ему антигену.

Поскольку появление антигена обязательно должно предшествовать возникновению борющегося с ним антитела, невосприимчивость к определенным заболеваниям развивается лишь после какого-то периода, в течение которого организм подвергается инфекции и реагирует на присутствие болезнетворного агента. Но если организм однажды уже «научился» создавать антитела, то впредь эти субстанции, обеспечивающие иммунитет, находятся в крови наготове и предотвращают вторичное заболевание уже перенесенной болезнью. Однако подобный иммунитет оставляют после себя лишь некоторые болезни. При других заболеваниях иммунитет может сохраняться лишь в течение непродолжительного времени. Этот срок зависит от общего состояния больного, интенсивности воздействия повторной инфекции и ряда других факторов.

Если ребенок заболевает корью, его организм реагирует на антиген, вырабатывая антитела против кори. После выздоровления эти антитела создают надежный иммунитет против повторного заболевания этой же болезнью. Но если затем ребенок подвергнется, например, значительной дозе облучения (опасный порог до сих пор еще не выяснен), его иммунитет не только к кори, но и к другим болезням может исчезнуть.

При каждой болезни в организме возникают антитела, специфические именно для данного заболевания. Кроме того, антитела разделяют на несколько основных групп в зависимости от характера их действия. Одни антитела борются с микробами путем нейтрализации их активности. Другие, названные цитолизинами, вырабатывают вещество, которое в полном смысле слова уничтожает инородные организмы.

Другую разновидность антител составляют агглютинины. Эти антитела обезвреживают бактерии, заставляя их склеиваться в комки. В крови людей, заболевших брюшным тифом, вырабатываются агглютинины, которые не допускают повторного заражения. Еще один вид антител, названных преципитинами, образует нерастворимое соединение с некоторыми бактериальными ядами и чужеродными белками, тем самым лишая их активности.

Разумеется, эту классификацию различных видов антител отнюдь нельзя считать исчерпывающей. Ученым удалось лишь выделить основные группы антител в зависимости от характера их действия, и уже один этот факт является свидетельством значительного прогресса. Но подлинная структура антител, детали их возникновения и более специфический характер их действия до сих пор остаются загадкой.

B 1960 году, т.е. в то же время, когда усовершенствованная методика микроскопирования дозволила человеку наблюдать образование тромбоцитов крови, впервые удалось сфотографировать молекулы антитела.

На фотографиях молекулы антитела по форме напоминают стерженьки и внешне не отличаются от молекул гаммаглобулина — белковой фракции плазмы, в которой они обычно встречаются. Как установлено, толщина молекулы антитела составляет примерно 0,000004 миллиметра, а длина по неизвестным причинам колеблется и достигает 0,000016 - 0,00004 миллиметра.

Способность человека оставаться здоровым в кишащей микробами внешней среде связана с тремя видами иммунитета: активным, пассивным и естественным. При всех этих трех видах иммунитета защитные вещества переносятся белками крови и фактически входят в состав жидкой части крови.

Активный иммунитет является результатом выработки в организме человека собственных антител в ответ на контакт с какой-либо определенной инфекцией. Он может быть также вызван искусственно путем введения человеку убитых или ослабленных микробов или разведенных токсинов болезни, как это делают, например, для предупреждения заболевания оспой, бешенством или полиомиелитом.

Такого рода иммунитет специфичен для одной какой-то болезни; его называют «активным», так как он осуществляется антителами, образуемыми в крови и тканях человека.

Пассивный иммунитет достигается без участия активных защитных сил организма больного. Вместо этого человеку вводят готовые антитела, полученные от животных или другого «хозяина», подвергшихся воздействию возбудителя заболевания. Так, например, человек приобретает пассивный иммунитет к дифтерии, если ему ввести противодифтерийные антитела, полученные от лошади. Иммунитет, достигаемый при введении сыворотки у лиц, переболевших скарлатиной и корью, также носит пассивный характер.

В отличие от активного и пассивного иммунитета естественный иммунитет не требует для своего развития предварительной «встречи» с болезнью, а также прививок и вакцинаций. Как свидетельствует сам термин, естественный иммунитет обусловлен врожденной способностью организма человека противостоять инфекциям. Например, два совершенно здоровых человека могут подвергнуться одинаковому заражению одной и той же болезнью, которую они еще не переносили. При этом один из них может заразиться, а другой, в силу природной невосприимчивости, останется здоровым. Человек может в одном случае устоять против интенсивного заражения, а в другом случае заболеть от воздействия значительно менее активной инфекции, ибо механизм естественного иммунитета бывает непостоянным не только у различных людей, но и у одного и того же человека.

Истинные причины естественного иммунитета изучены недостаточно, и четко определить их не представляется возможным. Однако проведенные недавно исследования позволили выдвинуть любопытные гипотезы. Так, ученые предположили, что иммунные факторы каким-то образом связаны с определенными белками крови и другими компонентами плазмы. Эта гипотеза получила сильную поддержку в 1954 году, когда д-ру Пиллемеру (Медицинский факультет Кливлендского университета, штат Огайо) удалось выделить совершенно необычный белок крови.

Открытие этого белка, получившего название пропердин (от латинского глагола perdire, что значит «разрушать»), проложило новые пути научному объяснению природы естественного иммунитета. Как показали первые же исследования, выраженность естественного иммунитета к большинству болезней находится в прямой зависимости от содержания пропердина в крови. У животных, как и у человека, при высоком содержании пропердина сопротивляемость инфекциям также оказывается высокой. Соответственно при снижении уровня пропердина в крови иммунитет падает.

Как показали дальнейшие наблюдения, сам по себе пропердин не является особенно полезным. Однако в присутствии других компонентов крови — ферментоподобного вещества, называемого комплементом, и следовых количеств магния, обычно находящегося в крови здорового человека, образуется особый механизм, известный под названием пропердиновой системы. Очевидно, именно пропердиновая система способна разрушать или нейтрализовать целый ряд бактерий, вирусов, простейших и других болезнетворных агентов.

Особенностью пропердиновой системы является тот факт, что в отличие от антител, специфичных по отношению только к какой-либо одной болезни, пропердиновая система, но всей видимости, обеспечивает общий иммунитет к целому ряду заболеваний. Более того, в отличие от других иммунных факторов пропердиновая система, очевидно, является частью врожденной устойчивости, общей как к неинфекционным, так и к инфекционным заболеваниям.

B замечательных исследованиях, проведенных недавно, сотрудники онкологического института Слоан-Кеттеринг пересадили раковые клетки добровольцам-заключенным исправительного дома в штате Огайо. У некоторых заключенных раковые клетки привились, и их пришлось удалять хирургическим путем. Но в организме других клетки рака были отторгнуты и уничтожены иммунными механизмами. Как показали исследования, лица, у которых рак привился, имели низкий уровень пропердина в крови, а в тех случаях, где прививка не удалась, содержание пропердина было высоким.

К сожалению, наука не располагает достаточными основаниями, позволяющими считать, что пропердин в большей степени, чем другой какой-либо фактор или сочетание ряда факторов, причастен к этой сопротивляемости организма раку. Но сама по себе возможность такой роли пропердина чрезвычайно интересна, как мы сможем убедиться в этом ниже.

Исследователи постоянно открывают в плазме все новые белковые фракции. На сегодняшний день уже обнаружено по меньшей мере около сотни этих сложных веществ. Однако какое количество их участвует в сопротивляемости организма инфекциям, предстоит выяснить в ходе дальнейших экспериментов. Но и те сведения о белках и других элементах плазмы, которыми располагают ученые, свидетельствуют о том, что кровь обеспечивает организм человека целой серией смыкающихся друг с другом защитных факторов, без которых человек, пожалуй, не прожил бы и года.

Одним из важнейших защитных факторов является механизм свертывания крови. Все мы не раз наблюдали образование сгустков, когда кровь, вытекающая из пореза, свертывалась при соприкосновении с воздухом. Как известно, сгустки образуются и внутри тела. Свертывание, характер которого до сих пор не выяснен до конца, позволяет производить автоматический «текущий ремонт» системы кровообращения и предотвращает серьезную потерю крови при повреждении кожи и тканей. Не будь этого, человек жил бы в вечном страхе перед смертельным кровотечением.

До недавнего времени полагали, что процесс свертывания имеет эпизодический характер: ведь повреждения системы кровообращения не столь уж часты. Но самые последние наблюдения показывают, что в системе кровообращения живого организма происходят постоянные разрушения. Достаточно положить ногу на ногу, потуже затянуть пояс, протиснуться сквозь толпу, а то и просто сесть за обеденный стол — каждое из этих абсолютно безобидных на первый взгляд действий может послужить причиной разрыва некоторых капилляров.

Д-р Фултон из Бостонского университета осуществил довольно необычную прижизненную микрокиносъемку кровотока в капиллярах. На заснятых им кадрах видно, как рвутся тончайшие сосуды при, казалось бы, совершенно нормальных условиях. Замечательно, что в фильмах Фултона видно также моментальное образование тромба, запечатывающего «пробоину».

В основе процесса свертывания крови лежит превращение растворимого белка крови — фибриногена — в нерастворимое вещество — фибрин. Фибрин образует множество нитей, служащих основой для формирования сгустка. Превращение фибриногена в фибрин связано с целым рядом химических реакций, происходящих в крови. Но они настолько сложны, что современные исследователи знают о них лишь в самых общих чертах.

Веществом, вызывающим превращение фибриногена в фибрин, является фермент, биохимический катализатор, называемый тромбином. Тромбин обладает столь высокой активностью, что одна его часть способна превратить в фибрин миллион частей фибриногена. Если бы тромбин находился в крови в свободном состоянии, его бесконтрольная свертывающая активность вскоре привела бы к летальному исходу. К счастью, предохранительные химические механизмы организма постоянно начеку, и потенциально смертоносный тромбин обычно циркулирует в крови в своей неактивной форме, носящей название протромбина. Протромбин превращается в активный тромбин лишь в случае необходимости, и то только в нужном количестве.

В крови существуют и другие факторы, препятствующие избыточному свертыванию крови. К ним относится химическое вещество гепарин, который образуется в печени. Гепарин способствует поддержанию нормального равновесия между свертывающей и антисвертывающей системами крови.

Для образований сгустка крови пассивный протромбин должен вначале превратиться в тромбин. Этот процесс происходит под действием еще одного химического вещества — фермента тромбопластина. Тромбопластин пускает в ход механизм свертывания крови. Он образуется лишь в случае повреждения ткани или кровеносного сосуда, требующего «ремонта» с помощью сгустка.

Тромбопластин образуется двояким путем. Один из способов заключается в следующем: пораженные ткани сами выделяют жидкость, которая стимулирует образование этого фермента кровью. Другой путь образования тромбопластина осуществляется с помощью тромбоцитов. Тромбоциты скапливаются у краев разрыва кровеносного сосуда и высвобождают тромбопластин.

Интересно проследить за этим сложным химическим процессом и посмотреть, как же образуется сгусток крови. Вот человек с размаху садится на стул, и при этом резком движении у него рвутся несколько капилляров в ноге, причем сам он даже не подозревает об этом. Циркулирующие в крови тромбоциты попадают на шероховатые края разрыва, образуют комок, а затем, распадаясь, высвобождают тромбопластин. Этот фермент с помощью имеющегося в крови кальция воздействует на неактивный протромбин, также постоянно циркулирующий в крови, и превращает его в активный тромбин. Количество тромбина зависит от количества тромбопластина, высвободившегося в момент первоначального повреждения.

Тромбин, действуя как фермент, вызывает превращение растворимого фибриногена в нити нерастворимого фибрина, которые образуют заплатку на разрыве в капиллярной стенке. Густая сеть, состоящая из фибрина, улавливает кровяные тельца и становится основой сгустка. В то время как сгусток закрывает отверстие и предотвращает дальнейшую потерю крови, в самом организме происходит заживление ранки. После того как потребность в сгустке исчезает, он растворяется и удаляется различными элементами крови.

Таков в общих чертах известный нам механизм свертывания крови. Но многие промежуточные ступени предстоит еще уточнить. Так, например, известно, что в крови циркулирует незначительное количество вещества, носящего название антитромбин. Антитромбин контролирует образование и действие тромбина и тем самым предотвращает чрезмерное свертывание. Известно также, что протромбин, из которого образуется тромбин, производится в печени. Однако для образования протромбина необходимо присутствие витамина К, который вырабатывается в кишечном тракте. Недостаток этого витамина тормозит образование протромбина, а это в свою очередь пагубно отражается на работе механизма свертывания.

Несомненно, защита организма на этом важнейшем участке фронта связана с деятельностью других, до сих пор не открытых элементов.

Дальнейшие исследования призваны разрешить целый ряд исключительно важных проблем, связанных с защитными свойствами крови.




© Авторы и рецензенты: редакционный коллектив оздоровительного портала "На здоровье!". Все права защищены.


 
Текст сообщения*
Защита от автоматических сообщений
Загрузить изображение
 

nazdor.ru
На здоровье!
Беременность | Лечение | Энциклопедия | Статьи | Врачи и клиники | Сообщество


О проектеКарта сайта β На здоровье! © 2008—2015
nazdor.ru, nazdor.com
Контакты Наш устав

Рекомендации и мнения, опубликованные на сайте, являются справочными или популярными и предоставляются широкому кругу читателей для обсуждения. Указанная информация не заменяет квалифицированную медицинскую помощь, основанную на истории болезни и результатах диагностики. Обязательно проконсультируйтесь с врачом.

Размещенные на сайте информационные материалы, включая статьи, могут содержать информацию, предназначенную для пользователей старше 18 лет согласно Федеральному закону №436-ФЗ от 29.12.2010 года "О защите детей от информации, причиняющей вред их здоровью и развитию".