Пользовательский поиск

Ионизация и её функции

Ионизация - это процесс преобразования атома или молекулы в ионы путём приобретения или потери заряженных частиц, таких как электроны и ионы. При ионизации газа создаются ионные пары, состоящие из свободных электронов и положительных ионов.

Продолжение ниже

Масс-спектрометрия биомакромолекул

... заряженных частиц в электрическом и магнитном поле, молекулы необходимо предварительно ионизировать. Существует большое число методов ионизации, при этом наиболее часто используются методы электронного или фотонного удара. Очевидно, что когда речь идет о биомакромолекулах,...

Читать дальше...

всё на эту тему


Типы ионизации

Процесс ионизации протекает по-разному в зависимости от того с каким зарядом электрон (положительным или отрицательным) в нём участвует. Положительно заряженным ион становится тогда, когда электрон, связанный с атомом или молекулой обладает достаточным количеством энергии, чтобы преодолеть потенциальный электрический барьер, который его удерживал и, таким образом, порвав связь с атомом или молекулой, высвободиться. Количество энергии, затрачиваемое на этот процесс называется энергией ионизации. Отрицательно заряженный ион возникает, когда свободный электрон сталкивается с атомом и затем попадает в энергетическое поле, высвобождая избыток энергии.

В целом, ионизацию можно разделить на два типа - последовательная ионизация и непоследовательная ионизация. В классической физике, может иметь место только последовательная ионизация. Непоследовательная ионизация нарушает некоторые законы классической физики.

Классическая ионизация

С точки зрения классической физики и модели атома Бора, атомная и молекулярная ионизация являются полностью детерминированными, а это значит, что любая проблема может быть определена и решена при помощи вычислений. Согласно классической физике, необходимо, чтобы энергия электрона превосходила энергетическую разницу потенциального барьера, который он пытается преодолеть. В данной концепции это оправдано: как человек не может перепрыгнуть через стену высотой 1 метр, не подпрыгнув в высоту не менее чем на 1 метр, так же и электрон не может преодолеть потенциальный барьер в 13,6 эВ, не обладая как минимум таким же зарядом энергии.

Положительная ионизация

В соответствии с этими двумя принципами, количество энергии, необходимое для высвобождения электрона должно быть больше или равно потенциальной разнице между текущей атомической связью или молекулярной орбиталью и орбиталью самого высокого уровня. Если поглощённая энергия превосходит потенциал, тогда электрон высвобождается и превращается в свободный электрон. Иначе электрон входит в возбуждённое состояние, пока поглощённая энергия не рассеется и электрон войдёт в нейтральное состояние.

Отрицательная ионизация

Согласно этим принципам и учитывая форму потенциального барьера, свободный электрон должен обладать энергией, которая больше или равна потенциальному барьеру, чтобы его преодолеть. Если свободный электрон обладает достаточной энергией для этого, он остаётся с минимальным энергетическим зарядом, остальная энергия рассеивается. Если электрон не обладает достаточной энергией, чтобы преодолеть потенциальный барьер, он может быть движим электростатической силой, описанной Законом Кулона по отношению к потенциальному энергетическому барьеру.

Последовательная ионизация

Последовательная ионизация – это описание того, как происходит ионизация атома или молекулы. Например, ион с зарядом +2 может возникнуть только от иона с зарядом +1 или +3. То есть цифровое обозначение заряда может изменяться последовательно, всегда изменяясь от числа к последующему прилегающему к нему числу.

Квантовая ионизация

В квантовой механике, помимо того, что ионизация может происходить классическим способом, при котором электрон обладает достаточной энергией для преодоления потенциального барьера, есть возможность туннельной ионизации.

Туннельная ионизация

Туннельная ионизация – это ионизация при помощи квантового туннеля. В классической ионизации электрон должен обладать достаточной энергией для преодоления потенциального барьера, но квантовый туннель позволяет электрону свободно двигаться сквозь потенциальный барьер в силу волновой природы электрона. Вероятность возникновения электронного туннеля сквозь барьер в геометрической прогрессии сокращает ширину потенциального барьера. Поэтому электрон с более высоким энергетическим зарядом может преодолевать энергетический барьер, после чего ширина туннеля сокращается и шанс прохождения через него возрастает.

Непоследовательная ионизация

Феномен непоследовательной ионизации имеет место, когда световое электрическое поле становится переменным и сочетается с туннельной ионизацией. Электрон, проходящий через туннель, может вернуться обратно с помощью переменного поля. На этом этапе он может как сочетаться с атомом или молекулой и высвобождать избыток энергии, так и вступать в дальнейшую ионизацию за счёт столкновений с частицами, обладающими высоким зарядом энергии. Эта дополнительная ионизация называется непоследовательной по двум причинам:

  1. Второй электрон перемещается беспорядочно.
  2. Атом или молекула с зарядом +2 может возникнуть прямо от атома или молекулы с нейтральным зарядом, таким образом, заряд, выраженный целым числом, меняется непоследовательно.

Непоследовательную ионизацию часто изучают при низкой напряжённости лазерного поля, поскольку обычно ионизация является последовательной при высокой скорости ионизации.

Явление непоследовательной ионизации легче понять на одномерной модели атома, которая ещё недавно была единственной моделью, которую можно было рассмотреть в числовом выражении. Это происходит, когда момент импульса для обоих электронов остаётся таким низким, что они могут эффективно двигаться в одномерном пространстве и может относиться к линейной поляризации, но не к циркулярной. Можно рассматривать два электрона как двухмерный атом, где происходит одновременная ионизации обоих атомов, а это и есть ионизация одного двухпространственного электрона, который превращается в струю вероятности под углом 45° на двухэлектронной проекции, возникшую от множества заряженных ядер или квадратного центра. С другой стороны последовательная ионизация представляет собой эмиссии с оси x и y, когда двухпространственный гипер-электрон проходит по потенциальным каналам Кулона от гипер-ядер и затем вступает в ионизацию под воздействием гипер-электрического поля под углом 45°.

Стабилизация атомов

Согласно теории Кука, электрон на внешнем быстро колеблющемся потенциале

V(x,t)=f(x)cos(wt)

будет подвергаться среднему по времени эффективному потенциалу.

Veff(x)= [∆f(x)]2/4w2

Это значит, что в пределах приближённого значения эффективный потенциал для электрического поля в двухполюсном приближённом значении, чей зависящий от времени потенциал является линейным, постоянен, и атом никогда не вступает в ионизацию, которая в результате проистекает на более низкой интуитивно исчисляемой скорости для более высокочастотных полей, чем значения низкочастотных полей, даже в пределах сверхсильного поля и стабилизации атома может происходить ионизация. Если выражаться точнее, данная теория показывает, что во время действия лазерного поля, формируется средний по времени эффективный потенциал H2+ , который притягивает электрон даже при наличии сильного электромагнитного поля подобно иону молекулы водорода и предотвращает ионизацию.

Диссоциация: отличия

Вещество может вступать в диссоциацию, не производя ионов. В качестве примера можно привести обычный сахар, молекулы которого вступают в диссоциацию с водой (сахар растворяется), но существуют в виде цельных нейтральных частиц. Другой интересный случай – это диссоциация натрия хлорида (столовая соль) на ионы натрия и хлорида. Несмотря на то, что данный пример напоминает явление ионизации, на самом деле эти ионы уже существуют внутри кристаллической решётки. Когда соль вступает в диссоциацию, её составные ионы попадают в окружение молекул воды, результат становится видимым (например, то, что раствор становится электролитическим). Однако о каком-либо передвижении или замещении электронов речь не идёт. Фактически процесс химического синтеза соли включает в себя ионизацию. Это химическая реакция.




© Авторы и рецензенты: редакционный коллектив оздоровительного портала "На здоровье!". Все права защищены.


 
Текст сообщения*
Защита от автоматических сообщений
Загрузить изображение
 

nazdor.ru
На здоровье!
Беременность | Лечение | Энциклопедия | Статьи | Врачи и клиники | Сообщество


О проектеКарта сайта β На здоровье! © 2008—2015
nazdor.ru, nazdor.com
Контакты Наш устав

Рекомендации и мнения, опубликованные на сайте, являются справочными или популярными и предоставляются широкому кругу читателей для обсуждения. Указанная информация не заменяет квалифицированную медицинскую помощь, основанную на истории болезни и результатах диагностики. Обязательно проконсультируйтесь с врачом.

Размещенные на сайте информационные материалы, включая статьи, могут содержать информацию, предназначенную для пользователей старше 18 лет согласно Федеральному закону №436-ФЗ от 29.12.2010 года "О защите детей от информации, причиняющей вред их здоровью и развитию".